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Abstract—Wireless Charging Vehicles (WCVs) have been
widely explored as a means of enabling continuous operation
of sensors that are powered by batteries. However, the energy
consumption of WCVs can be inefficient, leading to insufficient
energy supply for sensors that are located in challenging-to-
access areas. Consequently, there is a need to design an effective
charging and energy sharing scheme for sensors to improve the
quality of service in this setup. This paper focuses on the Joint
Optimization of Mobile charging and Energy sharing of sensors
(JOIN-ME) problem, which is known to be NP-hard. To address
this challenge, we first transform JOIN-ME into a submodular
maximization problem with general constraints. Subsequently,
we propose the Routing planning, Mobile charging, and Energy
sharing for Sensing devices (RMES) algorithm, which has an
approximation ratio of 1/8(1− 1/e). Finally, we conduct experi-
ments to showcase the superior performance of RMES compared
to existing baselines, under varying scales and constraints. Our
work on the design of an efficient charging and energy sharing
scheme for sensors can significantly improve the reliability and
longevity of wireless sensor networks, enabling the deployment
of these networks in critical applications such as environmental
monitoring, crowd sensing, and security surveillance.

Index Terms—Mobile Charging, Energy Sharing, Charging
Route Planning, Sensing Devices, Approximation Algorithm

I. INTRODUCTION

With the rapid development of sensing devices, Wireless

Sensor Network (WSN) has been widely deployed and applied

in recent years [1]–[5]. In WSN, each sensor needs to be

recharged by power supplies to sustain the normal operation.

Traditional recharging is mostly based on wired charging. At

the same time, recent breakthrough in Wireless Power Transfer

technology (WPT) [6] allows wireless energy transfer from

power supplies to rechargeable sensing devices, providing a

promising and flexible recharging way called mobile charging

and leading to the emergence of the Wireless Rechargeable

Sensor Network (WRSN), where the WPT technology is ap-

plied in WSN. In the general scenario of mobile charging, one

or multiple Wireless Charging Vehicles (WCVs) periodically

travel in WRSN to charge rechargeable sensors to ensure them
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Fig. 1. Mobile charging with energy sharing in WRSN

work perpetually. So far, a lot of research efforts [7], [8] have

been devoted to the mobile charging in WRSN and some

other related applications in body area network [9], underwater

monitoring [10], coal mining [11] and so on.

In the early years, as the effective charging range of WCVs

is quite finite (typically as low as a few meters in practice) and

sensors are physically isolated from each other, WCVs need

to move to sensors close to charge the sensors. Most works

are based on such a scenario [12], [13]. The challenges of

mobile charging in Wireless Rechargeable Sensor Networks

include energy and time limitations of the Wireless Charging

Vehicles, energy overheads caused by their travelling, and

remote locations of some sensors.

To alleviate the dilemma, Zhu et al. [14], [15] proposed

the energy sharing technology, which allows sensors to share

energy with others. In [16], the technology is utilized to

cope with harsh energy propagation conditions in underground

communications. However, related works do not consider

planning WCVs’ charging routes.

A feasible solution for the mobile charging problem is com-

bining route planning with energy sharing. The WCV can visit

and charge only selected sensors, while the charged sensors

can share their energy with other sensors through single-hop or

multi-hop energy transfer. This approach provides energy and

time-efficient routes and can successfully charge even hard-

to-access sensors with auxiliary devices. Though some energy

waste may occur during sharing, it is expected to be less than

the conservation of WCV. Necessary devices require extra cost

but can be amortized over time.

The JOIN-ME challenge tackles the optimization of the

charging strategy and path planning for mobile charging of
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sensing devices. Challenges include energy sharing, multi-

charging choices, and charging strategy and path planning.

A greedy energy sharing strategy is used to address these

challenges by transforming the joint optimization problem into

a submodular maximization problem. The proposed RMES

algorithm has an approximation ratio of 1/8(1−1/e), outper-

forming baseline algorithms, and being efficient enough for

real-world applications.

The main contributions of this paper are as follows:

• We formulate the JOIN-ME problem into a submodular

maximization problem with general constraints.

• We design an approximation algorithm called Routing plan-

ning, Mobile charging and Energy sharing for Sensing

devices(RMES) algorithm with an approximation ratio of
1
8 (1 − 1/e). We also used a learning based algorithm to

solve the TSP problem and get the cost of the WCV.

• We conduct simulation experiments to evaluate RMES. The

performance of the RMES problem is evaluated by changing

the WCV energy limit and the sensor number. We also

choose some baselines to compare with our algorithm.

II. CHARGING MODEL AND PROBLEM FORMULATION

A. Charging Model Description

We consider a WRSN consisting of n rechargeable sensors,

a WCV, and a base station. The WCV is the energy supplier

for all sensors in the network, whether directly or indirectly.

We assume that the WCV visits several sensors periodically

to maintain the normal operation of the sensor network. The

WCV starts from the base station for each tour and visits

several sensors. The sensors not visited by the WCV gain

energy from the sensors charged by WCV. Finally, the WCV

finishes this charging tour and goes back to the base station.

Consider a set of sensors S = {s1, s2, · · · , sn}, which

distribute in a 2D d×d plane. The sensors have diverse energy

demands E = {e1, e2, · · · , en}.
There are two ways for a sensor to gain energy:

a) WCV charging: A subset of sensors are directly

charged by the WCV. Denote the direct energy gain from

the WCV as Ec = {x1, x2, · · · , xn}, where xi is the en-

ergy gain of sensor si from WCV and the charging set is

X = {si | xi > 0}. Since a long time of charging may cause

the sensor to overheat, we assume that every sensor can only

be charged by the WCV with a limited energy Emax.

We also assume that the WCV has a limited energy Cmax,

and the cost of the WCV is a constraint for the WRSN. There

are two energy costs for WCV charging: the travelling energy

cost and the charging energy cost. For travelling energy cost,

we can denote that αL(T ), where α is the energy cost for the

WCV travel a unit distance, and L(T ) is the distance for the

WCV to visit all the charging points of T . For charging energy

cost, we can denote that
∑n

i=1 xi/ηi =
∑n

i=1 Tiemin/ηi,
where ηi is the charging efficiency of the WCV for sensor si.
We can get the total energy cost of WCV charging as follows:

C(T) = αL(T) +

n∑
i=1

Tiemin/ηi. (1)

Here we use the euclidean distance to calculate L(T), which

is less than the actual distance. In the simulation, we will give

a bigger α to offset the impact.

The total energy cost of WCV has a limit Cmax, which is the

maximum energy cost the WCV can afford before it returns

to the base station.

b) Energy sharing: Network connections between sen-

sors are common because data transmission and aggregation

between sensors are needed. These networks can also be

reused as energy transmission networks. Inherently, energy

loss is inevitable during sharing and is closely related to

practical factors such as distance and the transmission cable.

We use ηij to denote the energy efficiency from sensor si to

sensor sj . If si cannot directly charge sj , then ηij = 0. In our

study, we define ηij decreasing linearly:

ηij =

{
max{1− pdij , 0} if si can charge sj ,

0 otherwise,
(2)

where p is the energy loss coefficient, and dij is the distance

between si and sj . This energy efficiency definition is only

a simple example of sharing efficiency definition, and our

algorithm can be extended to more complex cases.

Notice that the energy sharing process can be a multi-hop

process. ηij may not be the max energy efficiency from si
to sj , because probably there is a sensor sk between si and

sj , and ηikηkj
> ηij . We use ηmax

ij to denote the max energy

efficiency from si to sj .

Suppose the energy transmitted from sensor si to sensor

sj is xij , then the energy received by sensor sj is xijη
max
ij .

We use Es to denote the energy sharing vector, i.e., Es =
{xij |i, j = 1, 2, · · · , n}.

After the WCV charging and energy sharing, the sensor

si gain xi = Tiemin from WCV,
∑n

j=1 xjiη
max
ji from energy

sharing, and gives
∑n

j=1 xij to other sensors. Then we get the

residual energy êi of sensor si as:

êi = xi +
n∑

j=1

xjiη
max
ji −

n∑
j=1

xij . (3)

B. Problem Formulation

In order to improve the overall availability and coverage,

we define the energy utility Ui for sensor si as follows:

Definition 1 (Energy utility Ui for a sensor). The energy utility
Ui for sensor si is defined as

Ui = min{êi/ei, 1}, (4)

where we compare the ratio of the sensor’s residual energy êi
and its energy requirement ei with 1, and the smaller of the
two is taken as the utility value.

Summing up the energy utility of all sensors, we get the

total energy utility U , which is closely related to the energy

gain of the WCV charging choice T and energy sharing Es:

U(T, Es) =
n∑

i=1

Ui =
n∑

i=1

min{êi/ei, 1}. (5)
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Here, We want to maximize the total utility U(T, Es) and

formulate the problem as follows:

Definition 2 (JOIN-ME problem). Given a set of sensors S
and a WCV with total energy cosr limit Cmax, Our goal is to
choose the best charging choice T and energy sharing Es to
maximize the total energy utility U . Consequently, we can for-
mulate the problem of Joint OptimIzatioN of Mobile charging
and Energy sharing of sensors (JOIN-ME) as follows:

max U(T, Es);

s.t. C(T) ≤ Cmax, X ⊆ S;

êi ≥ 0, i = 1, 2, · · · , n;
xi ≤ Emax, i = 1, 2, · · · , n;
xij ≥ 0 i, j = 1, 2, · · · , n;

(6)

C. NP-Hardness Proof of JOIN-ME

The JOIN-ME problem can be decomposed into two phases,

the energy sharing and charging intricately interconnected

phases. The energy sharing phase entails developing an energy

management strategy that accounts for the energy status of

individual sensors and the network’s energy requirements, to

determine the optimal distribution of energy resources among

sensors. The charging phase requires devising a charging

strategy for the WCV that maximizes the energy gain of

the network while minimizing the charging cost. Notably, the

solution to the charging problem depends on the energy shar-

ing phase results. The charging strategy is further evaluated

based on cost, which entails resolving the Traveling Salesman

Problem (TSP) to determine the optimal charging route.

Theorem 1. The JOIN-ME problem is NP-hard.

Proof: The hardness proof is based on the NP-hard

Charging Reward Maximization problem in [17] where a

mobile charger moves and charges sensors in WRSNs such

that the sum of charging rewards from all charged sensors,

which is proportional to the amount of energy charged, is

maximized without violation of charger energy capacity. With

all sharing energy variables xij (i, j = 1, 2, · · · , n) set to 0,

our problem can be directly reduced from the above problem.

Therefore, we conclude that JOIN-ME is NP-hard.

III. RMES ALGORITHM

A. Energy Sharing Strategy

In the energy sharing phase of RMES, we assume that the

WCV has already chosen a charging choice T and a subset

X of sensors to charge. Then we solve the energy sharing

problem to obtain the appropriate energy sharing vector Es.

We first generate the maximum energy efficiency matrix ηmax
ij

and then solve the energy sharing problem according to the

idea of a greedy algorithm.

We will first generate the maximum energy efficiency matrix

ηmax
ij , as shown in Lines 1 to 2 of Algorithm 1. This problem

can be solved easily by converting it into an all-pairs shortest-

path problem. By giving each edge a weight − log(ηij),
we transform the multiplication operation of efficiency into

Algorithm 1: Greedy Energy Sharing Algorithm

Input: Sensor set S,

Ec = {T1emin, T2emin, · · · , Tnemin}.
Output: Matrix variables of sharing energy Es.

/* Generate maximum energy efficiency
matrix ηmax

ij . */
1 Get all-pairs shortest-path matrix Dmax

ij by Johnson

algorithm for edge weight − log(ηij);
2 ηmax

ij ← exp(−Dmax
ij );

/* Solve energy sharing problem. */
3 Set xij ← 0 and êi ← xi for i, j = 1, 2, · · · , n;

4 kij ← ηmax
ij ei/ej for all i, j;

5 Sort K = {kij} non-increasingly;

6 for kij ∈ K do
7 if êj < ej and kij > 1 then

8 xij ← min

{
ej − êj
ηmax
ij

, êi

}
;

9 êi ← êi − xij ; êj ← êj + xijη
max
ij ;

10 return ES = {xij |i, j = 1, 2, · · · , n}.

an addition operation in the shortest-path problem. Use the

Johnson algorithm to solve the all-pairs shortest-path problem,

and suppose the result is Dmax
ij , then we can get the maximum

energy efficiency matrix ηmax
ij by ηmax

ij = exp(−Dmax
ij ).

Then we solve the energy sharing problem, which is shown

in Lines 2 to 6 of Algorithm 1. We first assume that si
transmits xij amount of energy to sj . The original part

of xij in energy ratio before sharing is xij/ei and after

sharing it turns into (ηmax
ij xij)/ej since sj receives ηmax

ij

amount of energy. In order to increase energy ratio, we have

(ηmax
ij xij)/ej > xij/ei, and we get

ηijei
ej

> 1. If energy on

sj is no less than its demand ej , it means sj obtains enough

energy either from WCV or sensors ahead of si in X , si will

not share energy with sj .

In overall greedy research, we use the utility increase ratio

kij = ηmax
ij ei/ej , i, j = 1 · · ·n, (7)

to determine the ratio of utility xij make before and after

the energy transmits from si to sj . We sort the kij in a non-

increasing way to ensure the sharing with higher ratio change

can be applied. For any si and sj , si only transfer energy

when sj has not reached its demand ej and kij > 1. After one

sensor completes, we access the next sensor in the sequence

and perform the same operations until all charged sensors are

processed. In this way, we can find an energy sharing vector Es

to maximize the overall energy utility when given a charging

subset X and charging energy Ec.

B. Energy Allocation Strategy

In the WCV charging phase of the RMES algorithm, we

find the optimal charging subset X and charging energy Ec to

maximize the overall energy utility. To solve this problem, we
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Algorithm 2: Cost-Efficient Algorithm

Input: Sensor set S with related properties, max

charging energy Emax, discretization factor nT .

Output: Charging choice vector T, energy sharing

matrix Es.

1 T
choice ← {

tchoice
i,t

∣∣i = 1, 2, · · · , n; t = 1, 2, · · · , nT

}
;

2 Set T to a zero vector, Es to a zero matrix;

3 while T
choice is not empty do

4 for ∀tchoice
i,t ∈ T

choice do
5 T′(i, t)← T; T′

i(i, t)← t;
6 Get according energy sharing matrix E′

s(i, t)
by Algorithm 1 of choice T′;

7 ΔU(i, t)← U(T′(i, t), E′
s(i, t))− U(T, Es);

8 ΔC(i, t)← C(T′(i, t))− C(T);
9 if C(T′(i, t)) ≤ Cmax or ΔU(i, t) = 0 then

10 T
choice ← T

choice\tchoice
i,t

11 tchoice
i,t ← argmax

tchoice
i,t

ΔU(i, t)

ΔC(i, t)
for ∀tchoice

i,t ∈ T
choice;

12 Set T ← T ′(i, t) and Es ← E′
s(i, t);

13 T
choice ← T

choice\{tchoice
i,j , j = 1 · · · t};

propose a cost-efficient algorithm referring to [18] as shown in

Algorithm 2. The main idea of the algorithm is to determine

the best WCV charging strategy to optimize the utility. In

every iteration, we choose the sensor si with the highest energy

utility ratio
ΔU(i,t)
ΔC(i,t) to charge energy emin, where ΔU(i, t) and

ΔC(i, t) are the increase of energy utility and cost of charging

sensor si to t respectively.

We first initialize T to a zero vector and Es to a zero

matrix, meaning no sensor is charged, and no energy is

shared. A choice set T
choice is defined to store the charg-

ing choices of each sensor. The choice tchoice
i,t means give

sensor si t units of energy emin, and i and t are the

index of sensor and discretized energy charging level re-

spectively. The choice set T
choice is initialized to T

choice ={
tchoice
i,t

∣∣i = 1, 2, · · · , n; t = 1, 2, · · · , nT

}
. In every iteration,

we choose the sensor si with the highest energy utility ratio
ΔU(i,t)
ΔC(i,t) to charge energy temin, where ΔU(i, t) and ΔC(i, t)
are the increase of energy utility and cost of update choice

tchoice
i,t respectively, and we use a learning-based way to solve

the TSP of WCV.

Notice that to update ΔC(i, t), a TSP must be solved.

Here, we adopted a deep learning-based method proposed by

W. Kool et al. [19] that combines attention mechanism and

reinforcement learning. This algorithm uses a graph neural

network (GNN) to encode the information of nodes and

edges, and a pointer network to output a sequence of nodes

representing the solution of TSP. The model is trained by

maximizing the expected reward, which is the negative value

of the TSP path length. This method performs comparable to

heuristic algorithms and can provide solutions quickly.

During the iterations, the charging choice is removed from

T
choice for two conditions:

• Rule 1: The cost of WCV exceeds Cmax for update choice

vector T ′ or the marginal energy utility of WCV is zero for

update energy sharing matrix E′
s when using the charging

choice tchoice
i,t to update T and Es. (Line 9)

• Rule 2: If charging choice tchoice
i,t is chosen in the previous

iteration, then the charging choice tchoice
i,j (j = 1 · · · t) is

removed from T
choice. In other words, if sensor si is charged

t units of energy emin, then we do not consider charging less

energy to sensor si in further iterations. (Line 13)

While all the charging choices are removed from T
choice, we

get the optimal charging subset X and charging energy Ec.

The complexity of this algorithm is O(n2n2
T ). Notice there

is a TSP problem (Line 8), which is the basic calculation unit

of the algorithm. Considering Line 13, rule 2 guarantees that

at least one choice will be removed after one loop. Since we

make a Tchoice with nnT choices (Line 1), The time complexity

of algorithm is O(n2n2
T ).

IV. THEORETICAL ANALYSIS

In this section, we give the theoretical analysis of the

performance of RMES. We will present a series of lemmas

to conclude the 1
8 (1− 1/e) approximation ratio of RMES.

We first introduce how to express and view T in a set

way. As the definition of T shows: a choice T means the

charging choice Ec = {T1emin, T2emin, · · · , Tnemin}. From

another point of view, if we divide a sensor si to nt pieces

and perform a full-or-none charging with emin, then Ti means

to charge Ti pieces of si. So we can introduce some set-like

definitions of T for easier analysis:

1) T1 ⊆ T2 means for T1 =
{
T 1
1 , T

1
2 , · · · , T 1

n

}
and T2 ={

T 2
1 , T

2
2 , · · · , T 2

n

}
, T 1

i ≤ T 2
i for ∀i, which means that T 1

i

pieces of si covers T 2
i pieces of si.

2) T ∪ eimin means to update T = {T1, · · · , Ti, · · · , Tn} to

T ∪ eimin = {T1, · · · , Ti + 1, · · · , Tn}, which means to

select one more piece of si to charge.

A. Analysis for Energy Sharing Strategy Property

Definition 3 (Nonnegativity, monotonicity, and submodu-

larity). Let TC be the full charge strategy, i.e., TC =
{nT , · · · , nT }. The U(T) is nonnegative, monotone, and sub-
modular for T if and only if:
• Nonnegativity:U(T) ≥ 0 for ∀T ⊆ TC .
• Monotonicity: U(T∪ eimin) ≥ U(T) for ∀T ⊂ TC and ∀i.
• Submodularity: U(T1 + eimin)−U(T1) ≥ U(T2 + eimin)−
U(T2) for ∀T1 ⊆ T2 ⊂ TC and ∀i.

Lemma 1. Energy utility U(T) is nonnegative, monotone, and
submodular for T .

The nonnegativity is proved from the definition of the

energy utility function. To prove monotonicity, we decompose

the energy utility into two parts, sharing and base, and show

that adding energy to any charging choice will increase both of

these parts, leading to an overall increase in the energy utility.

Finally, to prove submodularity, we use a greedy sharing

strategy and show that adding energy to a smaller charging
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choice will always have a greater marginal effect than adding

energy to a larger charging choice.

B. Analysis for Charging Discretization

To deal with continuous charging, we adopt a charging

energy discretization mechanism. In this subsection, we give

the gap between our solution to the optimal continuous one.

Lemma 2. When the energy capacity of the mobile charger
satisfies that Cmax > αn × 2

√
2d, the optimal energy utility

after charging energy discretization achieves at least 1/2 of
the optimal energy utility in the continuous case.

The proof can be obtained by rounding down the energy

charged to each sensor in the continuous optimal solution to

a multiple of emin , and adding a feasible discrete solution

where each sensor is charged with emin amount of energy.

C. Analysis for Energy Sharing Strategy Gap

In this subsection, we analyze the gap between our greedy

energy sharing strategy and the optimal sharing strategy. Ac-

cording to the previous analysis, we have U(X) = U(T,Es).
Let P ′ be our greedy sharing strategy and P ∗ be the optimal,

and energy utility under P ′ be U(T,E′
s) and energy utility

under P ∗ be U(T,E∗
s ).

Lemma 3. For any selected sensor set X with their charging
energy, the overall utility achieved by our greedy sharing
strategy P ′ in U(T,E′

s) can achieve at least 1/2 of the optimal
energy utility in U(T,E∗

s ) under optimal sharing strategy P ∗.

The proof is done by introducing an auxiliary formula and

comparing the marginal energy utilities for different policies,

including the proposed strategy, the optimal strategy, and some

special policies. Based on these comparisons, it is concluded

that the achieved energy utility with the proposed strategy is

at least as good as that in the optimal policy, leading to the

conclusion that the proposed strategy can achieve at least half

of optimal energy utility.

D. Approximation Ratio Analysis

Theorem 2. If energy capacity of mobile charger satisfies that
B > αn×2

√
2d, the proposed algorithm achieves 1

8 (1−1/e)
approximation ratio.

Proof: In Lemma 1, we prove that utility sharing func-

tion is nonnegative, monotone, and submodular. Hence, we

transform the joint optimization problem into a submodular

maximization problem with a general routing constraint. Thus,

referring to [18], our Cost-Efficient algorithm, where the

nearest-neighbor rule is applied to calculate the traveling

cost, would achieve 1
2 (1 − 1/e) bi-criterion approximation

ratio with a slightly relaxed budget constraint. The quality of

the approximated cost function C(T) in Equation (1) has a

significant impact on the relaxed degree.

Furthermore, we prove the 1/2 gap between discrete and

continuous solutions in Lemma 2, and the 1/2 approximation

ratio of our greedy energy sharing strategy compared with the

optimal in Lemma 3. Hence, combine all bounds above and

we can obtain 1
8 (1−1/e) approximation ratio of our solution.

Besides, proof of the time complexity of our algorithm is

omitted here due to the space limit.

V. EXPERIMENTS AND RESULTS

In order to verify the performance of our algorithm, we

conducted experiments and changed the energy limit of the

WCV and the number of sensors. We also selected a series

of classic algorithms, such as the greedy algorithm, clustering

algorithm, and TSP only, to compare with our algorithm. Each

instance uses four cores of Intel Xeon ICX Platinum 8358.

A. Evaluation Setup

TABLE I
DEFAULT SETTING OF PARAMETERS

Parameter Default Value

sensing region area d× d 200× 200
WCV maximum energy cost Cmax 27000

number of sensors n 150
unit traveling cost α 15

energy demand ei range [20, 100]
sharing energy loss coefficient p 0.001

sharing energy distance limit 15
WCV charge efficiency range [0.5, 0.7]

discretization factor nT 25
WCV charge limit 500

The default setting of parameters is shown in Table I.

B. Baseline Methods

Although no algorithm is completely compatible with the

JOIN-ME problem, some works are similar to ours. We select

the following algorithms for comparison:

a) Utility Greedy: This algorithm is similar to our

algorithm, but it only considers the energy utility of the

sensors. It is a greedy algorithm that iteratively selects the

sensor with the highest energy utility ΔU(i, t) and assigns it

to the WCV.

b) Clustering Method: This algorithm is a clustering

algorithm that divides the sensors into several clusters. Many

studies have shown that the clustering method can achieve a

good result [4], [20]–[22]. We use the DBSCAN algorithm to

cluster the sensors [23]. The sensor with the highest energy

need is selected to charge to match our capability-sharing

strategy. To calculate how much energy the WCV should

charge, we give every cluster a weight wi according to the

energy need of the cluster:

wcluster i =

∑
j∈cluster ej/ηcharged sensor,j

ηcharged sensor

. (8)

Then we calculate the energy for the WCV to visit all the

sensors need to chargeCtravel, and allocate the rest of the energy

to the sensors according to the weight wi:

xcharged sensor = (Cmax − Ctravel)
wclusterηcharged sensor∑

i∈cluster wi
. (9)
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c) TSP Only: In some studies, the energy sharing is

not considered [24], [25]. The TSP only means the sharing

efficiency is 0 and all other parameters are the same as our

RMES algorithm.

d) One Hop: In this algorithm, we set the maximum

energy sharing efficiency ηmax as:

ηmax
i,j = ηi,j ∀i, j, (10)

and all other parameters are the same as RMES. This algorithm

is intermediate between TSP Only and RMES.

C. RMES performance analysis

In this section, we will analyze the performance of the

RMES algorithm. We will compare the RMES algorithm with

other algorithms in Section V-B.
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Fig. 2. The average energy utility under different map settings and algorithms.
In subfigure (A), we change the WCV energy limit Cmax from 12000 to
37000; In subfigure (B), we change the sensor number n from 50 to 200.
Each situation is repeated 10 times with different random seeds.

As shown in Figure 2, we changed the sensor numbers n
and the WCV energy limit Cmax, and compared the average

energy utility. In Figure 2(A), we find the RMES algorithm

outperforms other baselines, and the results are very stable

for different random seeds. Notice that the clustering method

can only be used when there is enough energy for touring all

the clusters, so when the WCV Energy Limit Cmax is below

22000, the clustering method cannot be used. In Figure 2(B),

we still find that the RMES algorithm outperforms other

baselines. The utility greedy method does not perform well

when the sensor is sparse because the WCV does not consider

the energy cost of the WCV. When the sensor number grows,

the TSP Only method is badly degraded because it takes a

long time to visit all the sensors.

The time for a solution is also recorded for analyzing

the algorithm performance, shown in Figure 3. Since there

are caching mechanisms for TSP-solving and energy sharing

solving, and the T
choice can be removed for different reasons,

the actual solving time is less than we estimate. Notice that

the clustering method can be done at a very fast speed because

is a practical solution, which is different from the searching

method. In Figure 2(A), we find the solving time has a linear

relationship with the WCV energy limit Cmax because the

WCV energy limit Cmax is a bound for the search space. In

Figure 2(B), we find that as the sensor number n grows, the

solution time grows up in a linear way, which illustrates that

our algorithm is available in large-scale solution.
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Fig. 3. The time for a single solution. In subfigure (A), we change the WCV
energy limit Cmax from 12000 to 37000; In subfigure (B), we change the
sensor number n from 50 to 200. Each situation is repeated 10 times with
different random seeds.

VI. RELATED WORK

The optimization goal of the WSRNs can be generally

divided into three categories, including improving the energy

efficiency of mobile chargers [1], [12], [17], [26], minimiz-

ing charging delay [27]–[29] and optimizing network perfor-

mance [30]–[32]. Our work aims to improve energy efficiency

of WCV, a type of system in the first category. Goal is to

maximize energy ratio for stable WSRN operation.

There are many scenarios of the WSRNs. Many works [12],

[13] analyzed the WSRNs without sharing, and some works

use multi WCVs to charge the sensors [4], [33]. Scenarios

based on wireless bundle charging have been extensively

studied over the years [2], [20], [32], [34]–[36], where the

WCV can charge multiple sensors at the same time. Our work

solves the scenario that the sensors can share energy, which

is more complex because the geometry properties can not be

used to solve the problem.

Convex-hull optimization, heuristic, geometry-based, and

clustering-based methods are common methods for solving

WSRN problems. Due to the relatively good geometric prop-

erties of wireless charging, many works [2], [35], [36] focus

on geometric coverage optimization as the main solution

strategy. Based on these studies, how to solve the problem

that geometric properties are not highly correlated and the

learning-based method is ineffective is a problem that needs

to be solved in our work.

VII. CONCLUSION

RMES is a novel algorithm proposed for jointly optimizing

mobile charging and energy sharing for rechargeable sensors

in wireless networks. A greedy energy sharing strategy is con-

structed for multi-hop communication, and a charging energy

discretization method is proposed for continuous charging,

providing sensors with multiple charging choices. The RMES

algorithm achieves an approximation ratio of 18 (1 − 1/e)by

formulating the problem into a submodular optimization prob-

lem with a general routing constraint. Theoretical analysis

and simulation experiments demonstrate the effectiveness of

the proposed algorithm in improving reliability and longevity

of WSN, paving the way for advancements in areas such as

environmental monitoring and crowd sensing.
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